Por: Misael Cadavid MD

Los modelos matemáticos para predecir la evolución de la epidemia y el impacto de las medidas para su control son una bola de cristal de moda en todo el planeta, con intención más o menos académica y ejecutiva.

La mayoría parte de un modelo simple y elegante que se formuló hace casi un siglo, en 1927, y fue popularizado en 1991 por kermark-Mckendry el llamado modelo SIR (Susceptible, Infectado, Recuperado), o SEIR, que introduce a los Expuestos.

Este modelo se basa en ecuaciones diferenciales para describir la dinámica de los contagios en una población cerrada con N individuos que inicialmente son susceptibles (S) al patógeno y que, a partir de un infectado inicial, van contagiándose a una determinada velocidad y pasando a ser infectados (I). Tras un período de enfermedad activa, los que no fallecen pasan al estado de inmunes: se han recuperado (R) y ya no contagiarán más. Por tanto, la población susceptible va disminuyendo hasta que ya no se produzcan más contagios.

El problema es que este modelo ha de aplicarse en tiempo real, con pocos datos y gran incertidumbre sobre los parámetros. Los datos son poco fiables y se revisan y cambian retrospectivamente, por lo que los modelos han de cambiar también. Pero por muy inciertos que sean los modelos, puesto que hay que tomar decisiones rápidamente, mejor es hacerlo con la tenue luz de esa linterna que a oscuras.

La gran pregunta es cómo y cuánto podremos aplanar la curva de contagios (que es la curva de nuevos casos diarios) y dilatarla en el tiempo, para no colapsar los recursos disponibles, en particular las camas de UCI y los respiradores. Los modelos pueden ayudar a prever las necesidades de ampliación de esos recursos, pero al parecer los Epidemiólogo han pasado por el espectro desde premeditadores, profetas, pitonisas hasta locos que en el mejor de los casos, sus pronósticos han estado muy alejados de la realidad.

En su versión más simple, el modelo únicamente se alimenta de los datos del número diario de nuevos casos positivos por COVID-19 en el territorio que se analiza. Si llevamos un mes desde el inicio, tendremos 30 datos. Ese es el  tamaño muestral. El modelo debe hacer asunciones sobre la dinámica del contagio, con y sin medidas de intervención, y sobre el comportamiento del virus (distribución del tiempo de incubación y contagio, duración de la fase activa de la enfermedad, tasa de letalidad por edad, distribución de la gravedad y por tanto de la necesidad de recursos sanitarios como camas de UCI y en pisos de hospitalización). Mucha demanda de información para pocos datos, faltan grados de libertad.

Ajuste y predicción

Los modelos tienen dos fases: una de ajuste y otra de predicción. En la de ajuste, se determinan qué funciones matemáticas y valores de los parámetros son compatibles con los datos que observamos de evolución diaria de la epidemia en el pasado, incorporando también el conocimiento biomédico a priori sobre la historia natural de la enfermedad. Una vez elegido el modelo que mejor se ajusta a los datos del pasado –el que mejor predice el pasado– se utiliza para simular o predecir la evolución de los casos en el futuro, bajo distintos escenarios de intervención. El gran problema de esta fase es que no podemos estar seguros de que los parámetros seguirán en el futuro el patrón que se les supone.

Un parámetro fundamental es el número básico de reproducción (R₀), que mide el número medio de personas a las que cada infectado contagia. Los modelos parten de un valor para cuando el virus circula libremente, antes de haber tomado medidas. Ese depende de factores culturales y, por tanto, será muy distinto en Suecia, donde las personas viven aisladas y apenas se tocan, que en las grandes urbes donde el metro cataliza los contagios o en los países mediterráneos del sur, donde se apiñan en bares, besan para saludar a desconocidos y conviven varias generaciones en el mismo hogar.

Hasta hace poco, la mayor parte de los modelos asumían que el R₀ sin intervención podría estar en el intervalo de 2,25 y 2,5 y cuando es menor de 1 se supondría que el  contagio estaría en etapa de mitigación.

Faltan datos

Esta gran incertidumbre y variabilidad en las estimaciones está causada en último término porque desconocemos el dato fundamental: cuántos pacientes hay realmente infectados. Solo sabemos cuántos han dado positivo, pero este dato depende del número de pruebas de diagnóstico microbiológico realizadas. Así pues, la variable endógena del modelo se mide con error. Y a destiempo: a lo largo de la pandemia, en nuestro país, se ha efectuado en los hospitales y servicios de urgencia, y en la fase actual como tamizaje de grupos de riesgo asintomáticos.

Un artículo de Science estimaba que el 86 % de los casos habían pasado inadvertidos en Wuhan antes del 23 de enero, cuando empezó el confinamiento.

El hecho de que no sepamos el número de casos implica que la tasa de letalidad del virus sea desconocida y se estime de forma imprecisa. Este es, sin embargo, un dato fundamental para estimar los costos sociales de la enfermedad. Hasta tal punto es una incógnita el numerador (número de casos) que hay modelos diseñados para estimarlo a partir de los datos (más ciertos) de hospitalizados y graves (en UCI).

De hecho, si pudiéramos saber qué porcentaje de los casos son graves y requieren UCI, por edad, seríamos capaces de estimar el número de casos a partir del número de pacientes ingresados en UCI. Pero sin conocer la incidencia de la enfermedad nos faltan grados de libertad. Esa es la triste verdad.

Los modelos estiman la efectividad de las intervenciones para bajar el R₀, pero en último término la evolución de este parámetro depende del comportamiento humano, de la adherencia al confinamiento. Aunque estemos ya en fase de desaceleración o descenso en la curva de nuevos contagios, solo manteniendo la vigilancia epidemiológica y evitando activamente los contagios se conseguirá alcanzar una cota casi nula de nuevos contagios.

Algunos analistas intentan resolver el problema de la falta de grados de libertad alimentando a los modelos con más información (covariables y territorios), incorporando la movilidad de las personas entre áreas y la intensidad de las interacciones sociales.

Para concluir  a hoy hay en el país 28.236  infectados y 890 muertes , con una tasa de letalidad 3.15% , lo cual dista muchos de modelos matemáticos elaborados hace 3 meses por Hupert et al, en el cual se proyectaban varios escenarios y en el mejor de los escenarios (confinación y demás medidas de bioseguridad ) se infectaría el 5% de la población Colombiana equivalente a 2.469.000 personas y con 8.207 muertes, cifras que distan mucho de la realidad y que en su momento produjo un gran pánico, lo cual condujo a la destrucción de la economía y a casi 6 millones de desempleados.

Toda una tragedia, aunado a la ambivalencia conceptual de la OMS en cuanto a protocolos, indicaciones no claras para uso de tapabocas lo cual está generando un cartel mafioso, además de efectos contraproducentes no solo en la salud sino en el medio ambiente, desautorización de medicamentos probados, por estudios de casos y controles que no soportan conclusiones contundentes, etc. etc.

Estamos ante una realidad virtual que cada día nos lleva a una virtual realidad.

¡Es hora de volver a vivir!